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A B S T R A C T

Travel to other planetary bodies represents a major challenge to resource management. Previous manned ex-
ploration missions of long duration have been resupplied with food, water, and air as required. Manned missions
to other planetary bodies will have durations of years with little to no possibility of resupply. Consequently,
monitoring and forecasting resource consumption are mission-critical capabilities. The Hawaii Space Exploration
Analog and Simulation, a long-duration planetary analog simulation, has recently completed its fifth long-term
isolation mission conducted to assess the energy, food, and water needs of a six-person long-term planetary
mission. This study presents a novel method for forecasting energy consumption, which incorporates the
emotional state of the habitat crew. Gathered data show inhabitants in small environments can be influenced
considerably by the actions of a single member. This can result in dramatic changes in consumption that could
cause forecasting models to deviate to the point of total failure. Previous work found that inclusion of the daily
activities and the psychological states of the crew allows for higher accuracy in long-duration forecasts.
Currently, psychological assessments in the form of a Positive and Negative Affect Schedule and a generalized
artificial neural modulation method are used to incorporate emotional response into machine learning forecast
methods. Using these techniques and developments, a large-scale smart habitat control and forecasting system is
proposed that will monitor, control, and forecast HI-SEAS habitat resources for future HI-SEAS missions. This
new system requires the incorporation of psychological and physiological data of the crew, together with in-
formation on their activities and schedules.

1. Introduction

NASA has designated a number of red flag problems that must be
solved prior to extending manned missions deeper into the solar system,
with crew performance and cohesion being major concerns during long
periods of isolation. The HFBP has funded a number of campaigns (i.e.,
NNX11AE53G, NNX13AM78G, and NNX15ANO5G) in the form of HI-
SEAS to investigate crew composition and cohesion over long durations
(i.e., eight months or longer) in an isolated and confined environment.
The details of the Hi-SEAS missions are listed in Table 1.

NASA has used analog experiments for planetary exploration studies
such as the Haughton Mars Project (HMP), Aquarius/NEEMO, Human
Exploration Research Analog (HERA), and within some Antarctic
Stations over the years. Analog missions are useful for testing situations
that may occur during real exploration missions to Mars and the ex-
perimental setup is a important part of spaceflight research [1].

Previous studies dealing with team risk and performance have in-
cluded the Team Performance Task/Price of Cooperation test, con-
tinuous monitoring of face-to-face interactions with sociometric badges,
mitigation of the effects of isolation using immersive 3D virtual reality
interactions with the crew's family and friends, measurement of emo-
tional and effective states using automated analysis of multiple forms of
textual communications provided by crew members to identify relevant
and effective teamwork behaviors, and multiple stress and cognitive
monitoring studies [2].

Crew selection is studied as part of the development of a model for
crew composition. The level of autonomy is varied throughout each
mission, with low crew operational autonomy during the first and last
two months of the mission and high crew autonomy during the middle
months. This study constituted opportunistic research focused on en-
ergy consumption during mission simulations, conducted in addition to
the funded principal psychological and teamwork studies.
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The energy consumption in the habitat is the focus of the research
presented here as human travel to other planetary bodies will have
duration of years, with little to no possibility of resupply. Consequently,
the monitoring and forecasting of resource consumption is a mission
critical capability. The actions of a single crew member can heavily
influence small environments and throw forecasting models to the point
of total failure. Understanding how the energy is utilized and if the
energy can be forecasted are crucial to the success of these mars mis-
sion. The research presented in the following sections examine energy
consumption and forecasting improvements through the incorporation
of the emotional state of the crew. Subsequent sections suggest to in-
crease HI-SEAS simulation fidelity through the application of a virtual
water tank, and outfitting the crew with biometric feedback sensors.

1.1. HI-SEAS habitat

The HI-SEAS habitat is a 36-foot diameter dome that has two levels
(Fig. 1). The main floor consists of a work area, kitchen, dining room,
laboratory, and bathroom with a shower. It is attached to an 8-foot
square airlock that is connected to a 20-foot sea container. This area
contains the washer, dryer, and the networking/telemetry room. The
first floor area of 933-square feet has a useable area of 878-square feet
[3].

1.1.1. Power resources
Fig. 2 shows a simplified schematic of the habitat power system.

Power is provided by a 10-kW solar array, hydrogen fuel cell, and a
propane generator. Fig. 2 shows how power from each source enters the
habitat, is converted from DC to AC (if applicable), and then sent to the
habitat power loads on the outlets.

When battery power is low and there is insufficient solar generation,
the propane generator is activated. The hydrogen generator switches on
automatically should the battery levels become too low in the evening.
The propane generator is started manually by the crew.

A 10-kW solar array is located to the south of the habitat and it is
visible from the lab window. The monocrystalline silicon wafer mod-
ules generate 275W at maximum power. During the day, the solar array

charges the batteries (see Fig. 3) and the habitat operates on this battery
power overnight. The solar array generally starts charging the batteries
at around 08:00 local time (LT) and it stops charging at around 16:30
LT, although there are seasonal and weather-related variations. On
cloudy days, the solar panels are unable to charge the battery bank fully
[3].

The propane generator shown in Fig. 4 is used strictly as a backup
generator. The habitat stores energy in three Sony battery banks, up to
28.5 kWh (Fig. 2). The DC current from the batteries passes through an
inverter and it is converted to AC for use at the habitat outlets. Gen-
erally, the batteries are charged from the PV array during the day, and
the batteries will reach full charge by late morning or early afternoon.
With full sun, 80% of the batteries can be charged by 16:00 LT, and the
habitat will normally have sufficient power to operate until sunrise the
following day. Smart power management by the crew can extend the

Table 1
HI-SEAS mission dates, durations, and crew compositions. Mission 1 (M1)
through Mission 5 (M5).

Mission Start End #Days Male/Female

M1 4/12/13 8/12/13 120 3/3
M2 3/26/14 7/26/14 120 3/3a

M3 10/7/14 6/17/15 240 3/3
M4 8/28/15 8/28/16 365 3/3
M5 1/19/17 9/19/17 240 4/2

a M2 reduced to M/F of 2/3 four weeks into experiment.

Fig. 1. HI-SEAS habitat with 10-kW solar array and solar water heater with
tank. Photo credit: Ansley Barnard.

Fig. 2. Simplified schematic of habitat power system. Credit: Alex Velhner, Blue
Planet Research Ltd. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 3. HI-SEAS battery bank. Photo credit: Ansley Barnard.

Fig. 4. HI-SEAS habitat propane-fueled backup generator. Photo credit: Ansley
Barnard.
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duration of battery power availability [3].

1.1.2. Water resources
Hot water for the habitat is provided by a solar water heater, which

heats water contained in 150 gal. insulated tank. Hot water is available
to the crew well after sunset. This is a passive system and it requires no
maintenance from the crew engineer. There are also two external water
tanks seen in Fig. 5 of 1000 gal. (3785 L) that are refilled by habitat
support teams when required.

1.1.3. Sensors and telemetry
The habitat system is fitted with a sensor telemetry routing system.

A ControlByWeb X-310 web interface is utilized to control and collect
sensor information and to distribute it to a remote location. The X-319
is an Ethernet I/O module with four digital inputs that allow support for
up to four temperature and humidity sensors. Sensors are interfaced by
the web and they can be controlled externally. Using this technology,
the habitat is enabled for monitoring and logging of the power supply
using a customized web-based control page. Software allows graphical
visualization of the telemetry data, as well as its extraction into CSV
files for statistical analysis.

Sensors are located in a variety of sites within the habitat. All power
consumption is routed through the X-310 module via circuit breakers.
The circuits are specific to the laundry room, downstairs washroom and
laboratory, upstairs rooms and bathrooms, living room, dining room,
and kitchen. Power used in any of these areas can be monitored sepa-
rately. A CO2 sensor was placed in the dining area of the dome.
Temperature sensors are placed in the dining Room, one of the bed-
rooms, and the telemetry room. The main water tank has a laser level
sensor, and the Planetary Power Generator computer is able to monitor
and track power generation and distribution on its own [2].

2. Resource consumption

Energy and water consumption are monitored during the analog
missions, and these data provide a picture of the likely resource re-
quirements during exploration or colonization missions of other pla-
netary bodies. Mars missions could last for as long as 2.5 years with no
potential for resupply [2]. A no resupply restriction, consumption must
be monitored, controlled, and forecasted with a high degree of accu-
racy. This study considered data on crew consumption rates obtained
from current and previous HI-SEAS missions to construct predictor
models. These models were designed to predict crew consumption rates
and to allow for changes in crew schedules and behavior. Utilizing
machine learning, the habitat water and appliance usage was modeled
based on the frequency and power consumption of each system. This
information will assist in the production of high-accuracy forecasts of
consumption rates of future long-duration HI-SEAS missions.

2.1. Power consumption

Power consumption within the habitat for each of the missions (M1
through M5) are tabulated and analyzed for comparison. Table 2 shows
the total amount of power used in KWH over the duration of the mis-
sion. Table 2 does not scale the missions due to their different length, so
refer to Table 1 to account for the different lengths of each mission.

Fig. 5. HI-SEAS external water tanks containing 3785 L (1000 gallon) of water.
Photo credit: Ansley Barnard.

Table 2
HI-SEAS total mission consumption in habitat areas in KWH.

(KWH) M1 M2 M3 M4 M5

Living room 4129 524 2243 4037 2557
Lab and bath 847 221 6463 10663 7819
Washer/dryer 642 95 28 48 37
Kitchen 3544 990 3732 4478 3582
2nd Floor 392 969 3460 5967 2228
Heater 329 230 511 1034 840
Total 9887 5043 16437 26230 15219

Fig. 6. Total power consumption (KWH) from both 120-day missions. The
major difference in kitchen power is attributable to a food study conducted
during M1. During M2, the crew conserved energy diligently.
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Power consumption within the different areas of the habitat for the
first two missions (M1 and M2) are shown in Fig. 6. The total power
used over both missions show a major difference between the kitchen
power and is attributed to a food study being conducted in M1.

Additionally, M1 and M2 used space heaters in the living room area
making it difficult to compare to subsequent missions. The other areas
within the habitat show proportional usage between each mission.

The distribution of power consumption for M3 through M5 are
shown in Fig. 7 which importantly show a consistent power usage
distribution in the habitat, which an important result as this indicates
that the power usage is easily comparable between the three missions.

2.2. Water consumption

Total water consumption during all five missions varied greatly. M1
had abnormally high water consumption because of the use of flushing
toilets and a 500 gallon water tank, which made it difficult to compare
with the other missions; therefore, it was removed from the study. All
subsequent missions used composting toilets and had water tanks with
double the capacity (i.e., 1000 gallons). The total water usage for each
mission is shown in Table 3.

3. Forecasting energy use with crew emotional state

The HI-SEAS crews are presented with a battery of daily psycholo-
gical surveys and social experiments. Data used in this research project
were derived from the PANAS [7]. At the end of each day, each member
of the crew is presented with a questionnaire that comprises 20 dif-
ferent words, and they are asked to rate by how much they believe each
emotion applies to them. Negative words include guilty, hostile, and
irritable, while words associated with positive emotions include proud,
strong, and active [8].

The emotions are rated between 1 meaning “not at all” and 5
meaning “very much.” For non-clinical experiments, the PANAS is
considered a reliable measure of a population [9].

In this research, we defined a Disruptive Significant Event (DSE) as
any type of event that causes a major disruption of HI-SEAS crew
routines and activities. Each DSE was taken from the crew commander's
daily report and categorized into events that range from power failures
to water resupply. Research in Ref. [3] showed that the psychological
state of the crew has an effect on resource consumption rates. DSE have
minor to catastrophic effects on time series forecasting models. Thus,
consideration of DSE and psychological states could improve time series
forecasts [10].

To incorporate DSE into crew data HI-SEAS research provided this
study with a measure of the crews’ emotions through the PANAS re-
sults, as discussed in Sec. 3., which comprised the emotional ratio score
and the relative daily change in that ratio score. as seen in Fig. 8. Since
forecasting models are often Neural Networks and human emotion is
the neural modulation of synaptic responses [11], it was shown in Ref.
[3] that the incorporation of the emotional PANAS score into a Artifi-
cial Neural Network (ANN) improved the performance of the energy
forecasting models [12].

The PANAS score has direct effect on neural modulation and its
probability by incorporating it into existing neurons in an ANN through
the modification of the activation function. Within an ANN, this has the
effect of externally altering the weights of the network to enforce a new
type of behavior that is independent and external to training [13].

As seen in Ref. [3], altering the activation function is done to reflect
the general changes seen in the probability distribution according to the
PANAS score. A threshold value determines whether the neuron will
fire. To alter the probability density, we can alter the shape of the ac-
tivation function.

Forecasts for M3 were run on an Sequence to Sequence (S2S) Long
Short Term Memory (LSTM) Recurrent Neural Network (RNN). The S2S
LSTM-RNN model is constructed for weekly forecasts using a sliding
memory window each hour for 168 h for the entire 30 week simulation.

Fig. 7. Total power consumption (KWH) during M3–M5. Distribution of power
usage within the habitat remained consistent with low variation throughout all
three missions.

Table 3
HI-SEAS mission water consumption rates.

Missiona Daily Weekly Monthly Total

M2 53.4 449 1617 8088
M3 59.3 580 2240 15675
M4 61.7 299 1227 15256
M5 56.5 406 1659 14228

a Mission 1 (M1) data excluded because of major differences in water in-
frastructure between simulations. All values in gallons.
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Details of S2S LSTM-RNN are complex and readers are encouraged to
examine references [4–6] for further details.

Forecasting models run in Ref. [4] showed that forecasts improved
significantly with the incorporation of the crew's emotional state
through the PANAS score. Fig. 9 shows that forecasts without emotional
state showed a mean error of 14.13% while forecasts that incorporate
the crew PANAS score had a mean error of 5.39% as seen in Fig 10. This
shows that the crew mood correlates strongly the PANAS score. It is
hypothesized that more accurate measures of the crew's mental and
physical state will enable greater accuracy in forecasts, and is re-
commended as a way to improve HI-SEAS simulation fidelity.

4. Discussion

Given that crew energy consumption is influenced by both emotions
and external events, it should be possible to increase the fidelity of the
HI-SEAS simulation through modifications of the experimental proce-
dures. Crew consumption is heavily influenced by water resupplies,

which are not realistic on a real mission; therefore, it is proposed to
create a virtual water tank for the crew to monitor. Additionally, crews
adapt their behaviors regarding power consumption based on the
power available from the solar panels. Efforts to reduce power con-
sumption during various levels of power production have been under-
taken by the crews. However, this was done without full knowledge of
the actual power production or recognition of those appliances that
would have overall negative effects on energy resources. Two mod-
ifications to the simulation are proposed to improve fidelity.

4.1. Virtual water tank

Data from previous crews have shown very strong correlation be-
tween changes in crew behavior and water resupply. Leading up to the
resupply, crews begin to restrict water usage. Upon water delivery,
there is an explosion in activity with crews doing laundry and taking
showers. The water resupply creates an inadvertent out-of-sim situation
that should be rectified to increase the fidelity of HI-SEAS. Here, we
propose presenting future crews with a virtual water tank that they
could monitor and use without any indication of resupply. Meanwhile,
mission support could monitor the real water tanks and schedule the
refills.

The virtual tank will be much smaller, i.e., 1.5 times the average
daily water usage by the crew. The crew will be told the virtual tank has
a water generator with a variable generating rate, e.g., 1 gallon per
hour, which could be varied as required. The levels of the real water
tanks and the virtual tank will be interlinked in such a way that the
virtual generation rate will slow as the real water tank levels get lower,
ensuring the crew will not drain the tanks before resupply. The virtual
tank is 50 gallons. The rate is governed by the estimated number of days
left in the real tanks, such that it will never drop below one day's supply
of water. The water in the virtual tank can be calculated as in Eqs.
(1)–(3):

= ∗W l l W( ) /1000h ave (1)

= −W W( 24)/24rate hours (2)

= + ∗ < =−V h V W h( ) 50l l rate( 1) (3)

here, in Eq. (1), Wh is the number of water hours given by the current
level l , divided by the average usage per day in gallons. In Eq. (2), the

Fig. 8. M3 PANAS Ratio showing the PANAS Ratio, PANAS Sigma, and PANAS
FWHM. median=2.45, Max.= 3.39, X-Intercept= 107.8 [3].

Fig. 9. The standard S2S LSTM-RNN model (red line) and the PANAS LSTM-
RNN forecast (blue line) show a strong forecast performance difference com-
pared to measured data (black line) [3].

Fig. 10. Example of a forecasting failure due to the occurrence of a DSE cor-
related to an emotional change in the crew [3].
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water production rate Wrate is set by the results of Eq. (1) by subtracting
the number of water hours by one day and dividing by 24 h. This en-
sures the water production rate will slow as the water level approaches
the average of one day's water usage. This ensures the virtual tank will
not have water when the real water tanks are empty. The water hours of
the virtual tank are then calculated using Eq. (3) by taking the previous
virtual tank level −V l( 1) and adding the water production rate over the
number of hours.

4.2. Modeling crew individually

The crew's schedules and personal activities are uploaded to the
simulation on a daily basis. Fig. 11 shows the variety of activities that
the crew can plan ahead of time and the impacts of those activities on
resources. This allows the simulation to adapt for changes in activities.
The crew consumption simulation model will be implemented in the
habitat to log crew activities. The crew will be able to change their
intentions and inform the computer with ease. The crew simulation
model will be combined with methods for monitoring and identifying
appliances. The combination of these two models will be the foundation
of the forecasting model, which will be the next stage of development.

5. Conclusion

This study considered the electrical consumption in the kitchen of
the HI-SEAS habitat and psychological data of the crew in relation to
the proposal of a smart habitat control and forecasting system. The next
steps will be to incorporate all areas of consumption within the habitat,
including water. The neural modulation method is an analogy for

emotion that uses the PANAS score as a neural enhancer/inhibitor,
which has shown encouraging results. The neural modulation method
does not show that the results directly simulate emotional response and
is limited due to the PANAS score being such a broad measure. Body
sensors could provide data indicating the level of activity of each
member of the crew, which could be incorporated into predictions of
the daily needs of the crew. Once the system has been expanded into the
entire habitat, it could be adapted for all the habitat and planetary
colony systems. A large-scale intelligent control system could be de-
veloped to monitor and guide the crew in its activities, and to forecast
resource requirements over the course of a mission as a next step in this
research.
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